Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 42 results ...

Afroz, R (2020) Developing a low-carbon architecture pedagogy in Bangladesh. Buildings and Cities, 1(01), 637–49.

Andersen, C E, Kanafani, K, Zimmermann, R K, Rasmussen, F N and Birgisdóttir, H (2020) Comparison of GHG emissions from circular and conventional building components. Buildings and Cities, 1(01), 379–92.

Anderson, J and Moncaster, A (2020) Embodied carbon of concrete in buildings, Part 1: analysis of published EPD. Buildings and Cities, 1(01), 198–217.

Axon, S and Morrissey, J (2020) Just energy transitions? Social inequities, vulnerabilities and unintended consequences. Buildings and Cities, 1(01), 393–411.

Baborska-Narozny, M, Szulgowska-Zgrzywa, M, Mokrzecka, M, Chmielewska, A, Fidorow-Kaprawy, N, Stefanowicz, E, Piechurski, K and Laska, M (2020) Climate justice: air quality and transitions from solid fuel heating. Buildings and Cities, 1(01), 120–40.

Balouktsi, M (2020) Carbon metrics for cities: production and consumption implications for policies. Buildings and Cities, 1(01), 233–59.

  • Type: Journal Article
  • Keywords: accounting methods; cities; climate change; consumption-based accounting; greenhouse gas emissions; mitigation; net zero; public policy; target-setting;
  • ISBN/ISSN: 2632-6655
  • URL: https://doi.org/10.5334/bc.33
  • Abstract:
    The estimated cities’ contribution to climate change varies depending on the methods chosen by a given city for compiling its greenhouse gas (GHG) emission inventory. This study provides an interpretative synthesis of existing research to explore the differences of three emerging approaches to city-level GHG emissions accounting, based on methodological dimensions: boundary-setting, the categorisation of emissions and the type of emissions. The policy relevance and implications of selecting different system boundaries are explored: each approach can reveal important information which the others fail to identify. This suggests the value of using different and complementary approaches to address as many policy questions and relevant actors possible in climate action planning. Next, key methodological considerations that arise in target-setting approaches involving bringing the emissions balance to zero are presented. An analysis of actual ‘net-zero emission’ concepts used by eight cities reveals that their precise meaning and applicability remain ambiguous. Finally, to improve both the transparency about such metrics and their usability for policy and decision-making, this paper synthesises all key considerations occurring from the analysis of inventorying approaches and net-zero targets into a reporting and communication framework. Policy relevance Many cities are assuming responsibility for measures to mitigate climate change, but they need greater clarity on ‘climate neutral’ or ‘net-zero’ approaches. Each city’s intended purpose needs careful alignment with a choice of methods. The diverse accounting and target-setting landscape and the associated policy implications are elucidated. This can empower more cities to select appropriate methods and set ambitious targets. Calculation of a GHG emission balance is a means to an end and not the end itself. Its purpose is to show the options for action and measure success. Non-transparent methods involve reputational and ethical risks for city governments. A framework to improve transparency is presented. Dual-accounting approaches involving both production and consumption are now the new trend. Individual actors must be able to identify their influence and potential action scope for mitigating climate change. Agreement is needed on how to approach consumption-based accounting and create more city-specific data.

Bordass, B (2020) Metrics for energy performance in operation: the fallacy of single indicators. Buildings and Cities, 1(01), 260–76.

Clarke, L, Sahin-Dikmen, M and Winch, C (2020) Transforming vocational education and training for nearly zero-energy building. Buildings and Cities, 1(01), 650–61.

Crawley, J, McKenna, E, Gori, V and Oreszczyn, T (2020) Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data. Buildings and Cities, 1(01), 1–13.

Fawcett, T and Topouzi, M (2020) Residential retrofit in the climate emergency: the role of metrics. Buildings and Cities, 1(01), 475–90.

Francart, N, Höjer, M, Mjörnell, K, Orahim, A S, von Platten, J and Malmqvist, T (2020) Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities, 1(01), 70–85.

Frischknecht, R, Alig, M, Nathani, C, Hellmüller, P and Stolz, P (2020) Carbon footprints and reduction requirements: the Swiss real estate sector. Buildings and Cities, 1(01), 325–36.

Grant, E J (2020) Mainstreaming environmental education for architects: the need for basic literacies. Buildings and Cities, 1(01), 538–49.

Green, E, Lannon, S, Patterson, J, Variale, F and Iorwerth, H (2020) Decarbonising the Welsh housing stock: from practice to policy. Buildings and Cities, 1(01), 277–92.

Green, S D and Sergeeva, N (2020) The contested privileging of zero carbon: plausibility, persuasiveness and professionalism. Buildings and Cities, 1(01), 491–503.

Habert, G, Röck, M, Steininger, K, Lupísek, A, Birgisdottir, H, Desing, H, Chandrakumar, C, Pittau, F, Passer, A, Rovers, R, Slavkovic, K, Hollberg, A, Hoxha, E, Jusselme, T, Nault, E, Allacker, K and Lützkendorf, T (2020) Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(01), 429–52.

Hamstead, Z, Coseo, P, AlKhaled, S, Boamah, E F, Hondula, D M, Middel, A and Rajkovich, N (2020) Thermally resilient communities: creating a socio-technical collaborative response to extreme temperatures. Buildings and Cities, 1(01), 218–32.

Hoxha, E, Passer, A, Saade, M R M, Trigaux, D, Shuttleworth, A, Pittau, F, Allacker, K and Habert, G (2020) Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 1(01), 504–24.

Killip, G (2020) A reform agenda for UK construction education and practice. Buildings and Cities, 1(01), 525–37.

Klinsky, S and Mavrogianni, A (2020) Climate justice and the built environment. Buildings and Cities, 1(01), 412–28.

Kuittinen, M and Häkkinen, T (2020) Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 1(01), 182–97.

Lützkendorf, T (2020) The role of carbon metrics in supporting built-environment professionals. Buildings and Cities, 1(01), 676–86.

Lützkendorf, T and Frischknecht, R (2020) (Net-) zero-emission buildings: a typology of terms and definitions. Buildings and Cities, 1(01), 662–75.

Mayer, M (2020) Material recovery certification for construction workers. Buildings and Cities, 1(01), 550–64.

Parkin, A, Herrera, M and Coley, D A (2020) Net-zero buildings: when carbon and energy metrics diverge. Buildings and Cities, 1(01), 86–99.

Passe, U (2020) A design workflow for integrating performance into architectural education. Buildings and Cities, 1(01), 565–78.

Passe, U, Dorneich, M, Krejci, C, Koupaei, D M, Marmur, B, Shenk, L, Stonewall, J, Thompson, J and Zhou, Y (2020) An urban modelling framework for climate resilience in low-resource neighbourhoods. Buildings and Cities, 1(01), 453–74.

Patrick, M, Grewal, G, Chelagat, W and Shannon, G (2020) Planetary health justice: feminist approaches to building in rural Kenya. Buildings and Cities, 1(01), 308–24.

Roca-Puigròs, M, Billy, R G, Gerber, A, Wäger, P and Müller, D B (2020) Pathways toward a carbon-neutral Swiss residential building stock. Buildings and Cities, 1(01), 579–93.

Salter, J, Lu, Y, Kim, J C, Kellett, R, Girling, C, Inomata, F and Krahn, A (2020) Iterative ‘what-if’ neighborhood simulation: energy and emissions impacts. Buildings and Cities, 1(01), 293–307.

Schünemann, C, Olfert, A, Schiela, D, Gruhler, K and Ortlepp, R (2020) Mitigation and adaptation in multifamily housing: overheating and climate justice. Buildings and Cities, 1(01), 36–55.

Schiller, G, Gruhler, K and Xie, X (2020) Assessing the efficiency of indoor and outdoor access-related infrastructure. Buildings and Cities, 1(01), 56–69.

Schmidt, M, Crawford, R H and Warren-Myers, G (2020) Integrating life-cycle GHG emissions into a building’s economic evaluation. Buildings and Cities, 1(01), 361–78.

Schoenefeldt, H (2020) Delivery of occupant satisfaction in the House of Commons, 1950–2019. Buildings and Cities, 1(01), 141–63.

Simpson, K, Janda, K B and Owen, A (2020) Preparing ‘middle actors’ to deliver zero-carbon building transitions. Buildings and Cities, 1(01), 610–24.

Srivastava, M (2020) Cooperative learning in design studios: a pedagogy for net-positive performance. Buildings and Cities, 1(01), 594–609.

Steadman, P, Evans, S, Liddiard, R, Godoy-Shimizu, D, Ruyssevelt, P and Humphrey, D (2020) Building stock energy modelling in the UK: the 3DStock method and the London Building Stock Model. Buildings and Cities, 1(01), 100–19.

Steininger, K W, Meyer, L, Nabernegg, S and Kirchengast, G (2020) Sectoral carbon budgets as an evaluation framework for the built environment. Buildings and Cities, 1(01), 337–60.

Stevenson, F and Kwok, A (2020) Mainstreaming zero carbon: lessons for built-environment education and training. Buildings and Cities, 1(01), 687–96.

Tanguy, A, Breton, C, Blanchet, P and Amor, B (2020) Characterising the development trends driving sustainable neighborhoods. Buildings and Cities, 1(01), 164–81.

Waldman, B, Huang, M and Simonen, K (2020) Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Buildings and Cities, 1(01), 625–36.

Willand, N, Moore, T, Horne, R and Robertson, S (2020) Retrofit Poverty: Socioeconomic Spatial Disparities in Retrofit Subsidies Uptake. Buildings and Cities, 1(01), 14–35.